Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.890
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1073-1081, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621914

RESUMO

The present study aimed to investigate the effect and mechanism of Bupleuri Radix-Paeoniae Radix Alba medicated plasma on HepG2 hepatoma cells by regulating the microRNA-1297(miR-1297)/phosphatase and tensin homologue deleted on chromosome 10(PTEN) signaling axis. Real-time quantitative PCR(RT-qPCR) was carried out to determine the mRNA levels of miR-1297 and PTEN in different hepatoma cell lines. The dual luciferase reporter assay was employed to verify the targeted interaction between miR-1297 and PTEN. The cell counting kit-8(CCK-8) was used to detect cell proliferation, and the optimal concentration and intervention time of the medicated plasma were determined. The cell invasion and migration were examined by Transwell assay and wound healing assay. Cell cycle distribution was detected by PI staining, and the apoptosis of cells was detected by Annexin V-FITC/PI double staining. The mRNA levels of miR-1297, PTEN, protein kinase B(Akt), and phosphatidylinositol 3-kinase(PI3K) were determined by RT-qPCR. Western blot was employed to determine the protein levels of PTEN, Akt, p-Akt, caspase-3, caspase-9, B-cell lymphoma-2(Bcl-2), and Bcl-2-associated X protein(Bax). The results showed that HepG2 cells were the best cell line for subsequent experiments. The dual luciferase reporter assay confirmed that miR-1297 could bind to the 3'-untranslated region(3'UTR) in the mRNA of PTEN. The medicated plasma inhibited the proliferation of HepG2 cells, and the optimal intervention concentration and time were 20% and 72 h. Compared with the blank plasma, the Bupleuri Radix-Paeoniae Radix Alba medicated plasma, miR-1297 inhibitor, miR-1297 inhibitor + medicated plasma all inhibited the proliferation, invasion, and migration of HepG2 cells, increased the proportion of cells in the G_0/G_1 phase, decreased the proportion of cells in the S phase, and increased the apoptosis rate. The medicated plasma down-regulated the mRNA levels of miR-1297, PI3K, and Akt and up-regulated the mRNA level of PTEN. In addition, it up-regulated the protein levels of PTEN, Bax, caspase-3, and caspsae-9 and down-regulated the protein levels of p-Akt, p-PI3K, and Bcl-2. In conclusion, Bupleuri Radix-Paeoniae Radix Alba medicated plasma can inhibit the expression of miR-1297 in HepG2 hepatoma cells, promote the expression of PTEN, and negatively regulate PI3K/Akt signaling pathway, thereby inhibiting the proliferation and inducing the apoptosis of HepG2 cells.


Assuntos
Carcinoma Hepatocelular , Medicamentos de Ervas Chinesas , Neoplasias Hepáticas , MicroRNAs , Paeonia , Extratos Vegetais , Humanos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Hep G2 , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Caspase 3/metabolismo , Proteína X Associada a bcl-2 , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Apoptose , Proliferação de Células , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , RNA Mensageiro , Luciferases/metabolismo , Luciferases/farmacologia , Linhagem Celular Tumoral
2.
Cell Death Dis ; 15(4): 268, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627382

RESUMO

Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) represents the initial tumor suppressor gene identified to possess phosphatase activity, governing various cellular processes including cell cycle regulation, migration, metabolic pathways, autophagy, oxidative stress response, and cellular senescence. Current evidence suggests that PTEN is critical for stem cell maintenance, self-renewal, migration, lineage commitment, and differentiation. Based on the latest available evidence, we provide a comprehensive overview of the mechanisms by which PTEN regulates activities of different stem cell populations and influences neurological disorders, encompassing autism, stroke, spinal cord injury, traumatic brain injury, Alzheimer's disease and Parkinson's disease. This review aims to elucidate the therapeutic impacts and mechanisms of PTEN in relation to neurogenesis or the stem cell niche across a range of neurological disorders, offering a foundation for innovative therapeutic approaches aimed at tissue repair and regeneration in neurological disorders. This review unravels novel therapeutic strategies for tissue restoration and regeneration in neurological disorders based on the regulatory mechanisms of PTEN on neurogenesis and the stem cell niche.


Assuntos
Doenças do Sistema Nervoso , Doença de Parkinson , Humanos , Células-Tronco/metabolismo , Doenças do Sistema Nervoso/terapia , Doenças do Sistema Nervoso/metabolismo , Proliferação de Células , Doença de Parkinson/metabolismo , Diferenciação Celular , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo
3.
BMC Cancer ; 24(1): 400, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561726

RESUMO

BACKGROUND: This study evaluated the clinical relevance of a set of five serum-derived circulating microRNAs (miRNAs) in colorectal cancer (CRC). Additionally, we investigated the role of miR-20a-5p released by exosomes derived from cancer-associated fibroblasts (CAFs) in the context of CRC. METHODS: The expression levels of five circulating serum-derived miRNAs (miR-20a-5p, miR-122-5p, miR-139-3p, miR-143-5p, and miR-193a-5p) were quantified by real-time quantitative PCR (RT-qPCR), and their associations with clinicopathological characteristics in CRC patients were assessed. The diagnostic accuracy of these miRNAs was determined through Receiver Operating Characteristic (ROC) curve analysis. CAFs and normal fibroblasts (NFs) were isolated from tissue samples, and subsequently, exosomes derived from these cells were isolated and meticulously characterized using electron microscopy and Western blotting. The cellular internalization of fluorescent-labeled exosomes was visualized by confocal microscopy. Gain- and loss-of-function experiments were conducted to elucidate the oncogenic role of miR-20a-5p transferred by exosomes derived from CAFs in CRC progression. The underlying mechanisms were uncovered through luciferase reporter assay, Western blotting, enzyme-linked immunosorbent assays, as well as proliferation and migration assays. RESULTS: The expression levels of serum-derived circulating miR-20a-5p and miR-122-5p were significantly higher in CRC and were positively correlated with advanced stages of tumorigenesis and lymph node metastasis (LNM). In contrast, circulating miR-139-3p, miR-143-5p, and miR-193a-5p were down-regulated in CRC and associated with early tumorigenesis. Except for miR-139-3p, they showed a negative correlation with LNM status. Among the candidate miRNAs, significantly elevated levels of miR-20a-5p were observed in both cellular and exosomal fractions of CAFs. Our findings indicated that miR-20a-5p induces the expression of EMT markers, partly by targeting PTEN. Exosomal miR-20a secreted by CAFs emerged as a key factor enhancing the proliferation and migration of CRC cells. The inhibition of miR-20a impaired the proliferative and migratory potential of CAF-derived exosomes in SW480 CRC cells, suggesting that the oncogenic effects of CAF-derived exosomes are mediated through the exosomal transfer of miR-20a. Furthermore, exosomes originating from CAFs induced increased nuclear translocation of the NF-kB p65 transcription factor in SW480 CRC cells, leading to increased interleukin-6 (IL-6) production. CONCLUSIONS: We established a set of five circulating miRNAs as a non-invasive biomarker for CRC diagnosis. Additionally, our findings shed light on the intricate mechanisms underpinning the oncogenic impacts of CAF-derived exosomes and underscore the pivotal role of miR-20a-5p in CRC progression.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Colorretais , Exossomos , MicroRNAs , Humanos , Fibroblastos Associados a Câncer/metabolismo , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Colorretais/patologia , Exossomos/genética , Exossomos/metabolismo , Regulação Neoplásica da Expressão Gênica , Interleucina-6/genética , Interleucina-6/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo
4.
Cell Death Dis ; 15(4): 282, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643215

RESUMO

FBXO32, a member of the F-box protein family, is known to play both oncogenic and tumor-suppressive roles in different cancers. However, the functions and the molecular mechanisms regulated by FBXO32 in lung adenocarcinoma (LUAD) remain unclear. Here, we report that FBXO32 is overexpressed in LUAD compared with normal lung tissues, and high expression of FBXO32 correlates with poor prognosis in LUAD patients. Firstly, we observed with a series of functional experiments that FBXO32 alters the cell cycle and promotes the invasion and metastasis of LUAD cells. We further corroborate our findings using in vivo mouse models of metastasis and confirmed that FBXO32 positively regulates LUAD tumor metastasis. Using a proteomic-based approach combined with computational analyses, we found a positive correlation between FBXO32 and the PI3K/AKT/mTOR pathway, and identified PTEN as a FBXO32 interactor. More important, FBXO32 binds PTEN via its C-terminal substrate binding domain and we also validated PTEN as a bona fide FBXO32 substrate. Finally, we demonstrated that FBXO32 promotes EMT and regulates the cell cycle by targeting PTEN for proteasomal-dependent degradation. In summary, our study highlights the role of FBXO32 in promoting the PI3K/AKT/mTOR pathway via PTEN degradation, thereby fostering lung adenocarcinoma progression.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteômica , Proliferação de Células , Adenocarcinoma de Pulmão/patologia , Neoplasias Pulmonares/patologia , Serina-Treonina Quinases TOR/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Proteínas Musculares/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo
5.
Cell Mol Biol (Noisy-le-grand) ; 70(2): 128-136, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38430031

RESUMO

As the main active ingredient of Astragalus, Astragaloside IV (AS-IV) can ameliorate pulmonary fibrosis. In this experiment, we studied how AS-IV reduces idiopathic pulmonary fibrosis (IPF). Bleomycin (BLM) or TGF-ß1 was treated in mice or alveolar epithelial cells to mimic IPF in vivo as well as in vitro. ASV-IV alleviated levels of inflammatory cytokines and fibrosis markers in IPF model. Through detection of autophagy-related genes, ASV-IV was observed to induce autophagy in IPF. Besides, ASV-IV inhibited miR-21 expression in IPF models, and overexpression of miR-21 could reverse the protective potential of ASV-IV on IPF. PTEN was targeted by miR-21 and was up-regulated by ASV-IV in IPF models. In addition, levels of inflammatory cytokines and fibrosis markers, autophagy, as well as the PI3K/AKT/mTOR pathway regulated by ASV-IV could be neutralized after treatment with autophagy inhibitors, miR-21 mimics, or si-PTEN. Our study demonstrates that ASV-IV inhibits IPF through activation of autophagy by miR-21-mediated PTEN/PI3K/AKT/mTOR pathway, suggesting that ASV-IV could be acted to be a promising therapeutic method for IPF.


Assuntos
Fibrose Pulmonar Idiopática , MicroRNAs , Saponinas , Triterpenos , Animais , Camundongos , Autofagia/efeitos dos fármacos , Fibrose , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Saponinas/farmacologia , Saponinas/uso terapêutico , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Triterpenos/farmacologia , Triterpenos/uso terapêutico , PTEN Fosfo-Hidrolase/efeitos dos fármacos , PTEN Fosfo-Hidrolase/metabolismo
6.
Biochem Biophys Res Commun ; 709: 149828, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38537596

RESUMO

Long intergenic non-coding RNA 346 (LINC00346) has been reported to be involved in the development of atherosclerosis and specific cancers by affecting signaling pathways. However, its function in inflammation has not been thoroughly studied. Therefore, its expression pattern and function were determined in the human macrophage-like cell line THP-1. Lipopolysaccharide (LPS) treatment induced the expression of LINC00346. LPS-induced NF-κB activation and proinflammatory cytokine expression were suppressed or enhanced by the overexpression or knockdown of LINC00346, respectively. Analyses using dual luciferase assay and decoy RNAs that could block RNA-RNA interactions indicated that LINC00346 improves phosphatase and tensin homolog (PTEN) expression by sponging miR-25-3p. Subsequently, PTEN suppresses phosphoinositide-3 kinase (PI3K)-mediated conversion of phosphatidylinositol-4,5-bisphosphate (PIP2) into phosphatidylinositol-3,4,5-trisphosphate (PIP3) as well as consequent activation of protein kinase B (AKT) and NF-κB. Interestingly, database analysis revealed that the expression levels of LINC00346 and PTEN were simultaneously decreased in breast cancer tissues. Further analyses conducted using a breast cancer cell line, MDA-MB-231, confirmed the functional relationship among LINC00346, miR-25-3p, and PTEN in LPS-induced activation of NF-κB. These results indicate that miR-25-3p-sponging activity of LINC00346 affects the balance between PTEN and PI3K as well as the downstream activation of AKT/NF-κB pathway in inflammatory conditions.


Assuntos
Neoplasias da Mama , MicroRNAs , Humanos , Feminino , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinase , Fosfatidilinositol 3-Quinases/metabolismo , Lipopolissacarídeos/farmacologia , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Células MCF-7 , MicroRNAs/genética , MicroRNAs/metabolismo , Fosfatidilinositóis
7.
Sci Signal ; 17(826): eadh4475, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38442201

RESUMO

The translation elongation factor eEF1A promotes protein synthesis. Its methylation by METTL13 increases its activity, supporting tumor growth. However, in some cancers, a high abundance of eEF1A isoforms is associated with a good prognosis. Here, we found that eEF1A2 exhibited oncogenic or tumor-suppressor functions depending on its interaction with METTL13 or the phosphatase PTEN, respectively. METTL13 and PTEN competed for interaction with eEF1A2 in the same structural domain. PTEN-bound eEF1A2 promoted the ubiquitination and degradation of the mitosis-promoting Aurora kinase A in the S and G2 phases of the cell cycle. eEF1A2 bridged the interactions between the SKP1-CUL1-FBXW7 (SCF) ubiquitin ligase complex, the kinase GSK3ß, and Aurora-A, thereby facilitating the phosphorylation of Aurora-A in a degron site that was recognized by FBXW7. Genetic ablation of Eef1a2 or Pten in mice resulted in a greater abundance of Aurora-A and increased cell cycling in mammary tumors, which was corroborated in breast cancer tissues from patients. Reactivating this pathway using fimepinostat, which relieves inhibitory signaling directed at PTEN and increases FBXW7 expression, combined with inhibiting Aurora-A with alisertib, suppressed breast cancer cell proliferation in culture and tumor growth in vivo. The findings demonstrate a therapeutically exploitable, tumor-suppressive role for eEF1A2 in breast cancer.


Assuntos
Aurora Quinase A , Neoplasias da Mama , Neoplasias Mamárias Animais , PTEN Fosfo-Hidrolase , Fator 1 de Elongação de Peptídeos , Animais , Feminino , Humanos , Camundongos , Aurora Quinase A/genética , Aurora Quinase A/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proteína 7 com Repetições F-Box-WD/genética , Glicogênio Sintase Quinase 3 beta , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/patologia , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fator 1 de Elongação de Peptídeos/genética , Fator 1 de Elongação de Peptídeos/metabolismo
8.
Sci Transl Med ; 16(739): eadg5553, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38507470

RESUMO

Glioblastoma, the most lethal primary brain tumor, harbors glioma stem cells (GSCs) that not only initiate and maintain malignant phenotypes but also enhance therapeutic resistance. Although frequently mutated in glioblastomas, the function and regulation of PTEN in PTEN-intact GSCs are unknown. Here, we found that PTEN directly interacted with MMS19 and competitively disrupted MMS19-based cytosolic iron-sulfur (Fe-S) cluster assembly (CIA) machinery in differentiated glioma cells. PTEN was specifically succinated at cysteine (C) 211 in GSCs compared with matched differentiated glioma cells. Isotope tracing coupled with mass spectrometry analysis confirmed that fumarate, generated by adenylosuccinate lyase (ADSL) in the de novo purine synthesis pathway that is highly activated in GSCs, promoted PTEN C211 succination. This modification abrogated the interaction between PTEN and MMS19, reactivating the CIA machinery pathway in GSCs. Functionally, inhibiting PTEN C211 succination by reexpressing a PTEN C211S mutant, depleting ADSL by shRNAs, or consuming fumarate by the US Food and Drug Administration-approved prescription drug N-acetylcysteine (NAC) impaired GSC maintenance. Reexpressing PTEN C211S or treating with NAC sensitized GSC-derived brain tumors to temozolomide and irradiation, the standard-of-care treatments for patients with glioblastoma, by slowing CIA machinery-mediated DNA damage repair. These findings reveal an immediately practicable strategy to target GSCs to treat glioblastoma by combination therapy with repurposed NAC.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/tratamento farmacológico , Ferro/metabolismo , Glioma/tratamento farmacológico , Neoplasias Encefálicas/tratamento farmacológico , Células-Tronco Neoplásicas/patologia , Enxofre/metabolismo , Enxofre/uso terapêutico , Fumaratos , Linhagem Celular Tumoral , PTEN Fosfo-Hidrolase/metabolismo
9.
Cell Death Dis ; 15(3): 225, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499532

RESUMO

Lung cancer is the major cause of death worldwide. Activation of oncogenes or inhibition of tumor suppressors causes cancer formation. Previous studies have indicated that PTEN, as a tumor suppressor, inhibits cancer formation. In this study, we studied the role of PTEN in EGFRL858R-induced lung cancer in vivo. Interestingly, loss of PTEN increased bronchial cell hyperplasia but decreased alveolar cell hyperplasia in EGFRL858R*PTEN-/--induced lung cancer. Systematic analysis of gene expression by RNA-seq showed that several genes related to ciliogenesis were upregulated in EGFRL858R*PTEN-/--induced lung cancer and subsequently showed that bronchial ciliated cells were hyperplastic. Several critical ciliogenesis-related genes, such as Mucin5A, DNAI2, and DNAI3, were found to be regulated by NR2F1. Next, NR2F1 was found to be inhibited by overexpression of PTEN, indicating that PTEN negatively regulates NR2F1, thereby inhibiting the expression of ciliogenesis-related genes and leading to the inhibition of bronchial cell hyperplasia during EGFRL858R-induced lung cancer progression. In addition, we also found that PTEN decreased AKT phosphorylation in A549, KRAS mutant, and H1299 cells but increased AKT phosphorylation in PC9, EGFRL858R, and H1299L858R cells, suggesting that PTEN may function as a tumor suppressor and an oncogene in lung cancers with KRAS mutation and EGFR mutation, respectively. PTEN acts as a double-edged sword that differentially regulates EGFRL858R-induced lung cancer progression in different genomic backgrounds. Understanding the PTEN in lung cancer with different genetic backgrounds will be beneficial for therapy in the future.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Hiperplasia , Proteínas Proto-Oncogênicas p21(ras)/genética , Receptores ErbB/metabolismo , Mutação , Linhagem Celular Tumoral , Fator I de Transcrição COUP/genética , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo
10.
Chem Biol Drug Des ; 103(3): e14459, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38538058

RESUMO

Diosgenin, a natural steroidal sapogenin, has recently attracted a high amount of attention, as an effective anticancer agent in ovarian cancer. However, diosgenin mediated anticancer impacts are still not completely understood. Thus, the present study evaluated the effect of diosgenin on the proliferation, apoptosis, and metastasis of ovarian cancer cells. OVCAR-3 and SKOV-3 cells were treated with diosgenin, cellular viability was assessed by MTT assay and apoptosis was measured by ELISA and evaluated the protein expression levels of apoptotic markers through western blotting. Cell migration was examined by measuring the mRNA levels of genes involved in the cell invasion. The protein expression levels of main components of PI3K signaling were evaluated via western blotting. Diosgenin led to significant inhibition of cellular proliferation in a dose-dependent manner. It also induced apoptosis through upregulating pro-apoptotic markers and downregulating antiapoptotic mediators. In addition, OVCAR-3 cells exposure to diosgenin decreased cell migration and invasion. More importantly, diosgenin downregulated the expression levels of main proteins in PI3K signaling including PI3K, Akt, mTOR, and GSK3. Diosgenin inhibited the proliferation and migration of OVCAR-3 ovarian cancer cells and induced apoptosis, which may be mediated by targeting PI3K signaling.


Assuntos
Diosgenina , Neoplasias Ovarianas , PTEN Fosfo-Hidrolase , Feminino , Humanos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/efeitos dos fármacos , Diosgenina/farmacologia , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Quinase 3 da Glicogênio Sintase/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , PTEN Fosfo-Hidrolase/efeitos dos fármacos , PTEN Fosfo-Hidrolase/metabolismo , Regulação para Cima
11.
J Transl Med ; 22(1): 254, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459588

RESUMO

BACKGROUND: Although hepatitis B virus (HBV) infection is a major risk factor for hepatic cancer, the majority of HBV carriers do not develop this lethal disease. Additional molecular alterations are thus implicated in the process of liver tumorigenesis. Since phosphatase and tensin homolog (PTEN) is decreased in approximately half of liver cancers, we investigated the significance of PTEN deficiency in HBV-related hepatocarcinogenesis. METHODS: HBV-positive human liver cancer tissues were checked for PTEN expression. Transgenic HBV, Alb-Cre and Ptenfl/fl mice were inter-crossed to generate WT, HBV, Pten-/- and HBV; Pten-/- mice. Immunoblotting, histological analysis and qRT-PCR were used to study these livers. Gp73-/- mice were then mated with HBV; Pten-/- mice to illustrate the role of hepatic tumor biomarker golgi membrane protein 73 (GP73)/ golgi membrane protein 1 (GOLM1) in hepatic oncogenesis. RESULTS: Pten deletion and HBV transgene synergistically aggravated liver injury, inflammation, fibrosis and development of mixed hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). GP73 was augmented in HBV; Pten-/- livers. Knockout of GP73 blunted the synergistic effect of deficient Pten and transgenic HBV on liver injury, inflammation, fibrosis and cancer development. CONCLUSIONS: This mixed HCC-ICC mouse model mimics liver cancer patients harboring HBV infection and PTEN/AKT signaling pathway alteration. Targeting GP73 is a promising therapeutic strategy for cancer patients with HBV infection and PTEN alteration.


Assuntos
Carcinoma Hepatocelular , Hepatite B , Neoplasias Hepáticas , PTEN Fosfo-Hidrolase , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/patologia , Fibrose , Hepatite B/complicações , Vírus da Hepatite B , Inflamação/patologia , Fígado/patologia , Neoplasias Hepáticas/patologia , Proteínas de Membrana/metabolismo , Camundongos Knockout , PTEN Fosfo-Hidrolase/metabolismo
12.
Proc Natl Acad Sci U S A ; 121(12): e2312290121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38483999

RESUMO

Human cytomegalovirus (HCMV) infection of monocytes is essential for viral dissemination and persistence. We previously identified that HCMV entry/internalization and subsequent productive infection of this clinically relevant cell type is distinct when compared to other infected cells. We showed that internalization and productive infection required activation of epidermal growth factor receptor (EGFR) and integrin/c-Src, via binding of viral glycoprotein B to EGFR, and the pentamer complex to ß1/ß3 integrins. To understand how virus attachment drives entry, we compared infection of monocytes with viruses containing the pentamer vs. those without the pentamer and then used a phosphoproteomic screen to identify potential phosphorylated proteins that influence HCMV entry and trafficking. The screen revealed that the most prominent pentamer-biased phosphorylated protein was the lipid- and protein-phosphatase phosphatase and tensin homolog (PTEN). PTEN knockdown with siRNA or PTEN inhibition with a PTEN inhibitor decreased pentamer-mediated HCMV entry, without affecting trimer-mediated entry. Inhibition of PTEN activity affected lipid metabolism and interfered with the onset of the endocytic processes required for HCMV entry. PTEN inactivation was sufficient to rescue pentamer-null HCMV from lysosomal degradation. We next examined dephosphorylation of a PTEN substrate Rab7, a regulator of endosomal maturation. Inhibition of PTEN activity prevented dephosphorylation of Rab7. Phosphorylated Rab7, in turn, blocked early endosome to late endosome maturation and promoted nuclear localization of the virus and productive infection.


Assuntos
Monócitos , Internalização do Vírus , Humanos , Células Cultivadas , Monócitos/metabolismo , Citomegalovirus/fisiologia , Receptores ErbB/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo
13.
Arch Biochem Biophys ; 753: 109912, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325773

RESUMO

Hypertrophic scar (HS) is a dermatological condition characterized by an excessive accumulation of proteins in the extracellular matrix (ECM) and an elevated cell count. The development of HS is thought to be linked to the disruption of dermal fibroblast proliferation and apoptosis. The processes of cell proliferation and apoptosis are notably influenced by PTEN. However, the precise mechanisms by which PTEN regulates hypertrophic scar fibroblasts (HSFs) and its overall role in scar formation are still not fully understood. The objective of this study was to investigate the influence of PTEN on hypertrophic scars(HS) and its function in the regulation of scar formation, with the aim of identifying a pivotal molecular target for scar treatment. Our results demonstrate that the overexpression of PTEN (AdPTEN) significantly suppressed the expression of type I collagen (Col I), type III collagen (Col III), and alpha smooth muscle actin (α-SMA) in HSFs. Furthermore, it was observed that the introduction of AdPTEN resulted in the suppression of Bcl-xL expression, which consequently led to an increase in the apoptosis of HSFs. Similarly, in the inhibition of collagens expression and subsequent increase in HSF apoptosis were also observed upon silencing Bcl-xL (sibcl-xL). Additionally, the in vitro model demonstrated that both AdPTEN and sibcl-xL were effective in reducing the contraction of FPCL. The findings of our study provide validation for the role of PTEN in inhibiting the development of hypertrophic scars (HS) by modulating the expression of extracellular matrix (ECM) proteins and promoting apoptosis in hypertrophic scar fibroblasts (HSFs) via Bcl-xL. These results indicate that PTEN and Bcl-xL may hold promise as potential molecular targets for therapeutic interventions aimed at managing hypertrophic scars.


Assuntos
Cicatriz Hipertrófica , Humanos , Apoptose , Cicatriz Hipertrófica/metabolismo , Colágeno Tipo I/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , PTEN Fosfo-Hidrolase/metabolismo
14.
J Biochem Mol Toxicol ; 38(3): e23666, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38375688

RESUMO

Exosomal microRNAs (miRNAs) derived from cancer cell is an important regulatory molecule that mediates the formation of tumor drug resistance, but function and mechanisms of exosomal miRNA in sorafenib resistance of hepatocellular carcinoma (HCC) have not been studied. We detected the level and prognosis of miR-93 in HCC by using TCGA HCC database. For confirming the extracted exosome, transmission electron microscopy was used. Cy3-labeled miR-93 and quantitative reverse transcription-polymerase chain reaction were used to prove that exosomal miR-93 derived from HCC cell can be transferred to sensitive HCC cells. CCK8, EdU, and flow cytometer assay were used to confirm the function of exosomal miR-93 in sorafenib resistance of HCC. Bioinformatics software and luciferase reporter assay was used to confirm the direct targeting relationship between PTEN and miR-93. Western blot was used to validate downstream pathways. We found that miR-93 is overexpressed and a prognostic risk factor for the HCC patients. miR-93 was overexpressed in sorafenib resistant HCC cells compared with sensitive cells, and miR-93 contributed to sorafenib resistance of HCC cells through targeting PTEN. miR-93 was enriched in exosomes that secreted from sorafenib resistant cells, and these exosomal miR-93 promote the spread of sorafenib resistant through targeting PTEN to reactivate PI3K/AKT pathway. Therefore, miR-93 can act as a potential therapeutic target for advanced patients with acquired sorafenib resistance.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo
15.
Br J Cancer ; 130(8): 1377-1387, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38396173

RESUMO

BACKGROUND/OBJECTIVE: To explore the anti-tumour activity of combining AKT inhibition and docetaxel in PTEN protein null and WT prostate tumours. METHODS: Mechanisms associated with docetaxel capivasertib treatment activity in prostate cancer were examined using a panel of in vivo tumour models and cell lines. RESULTS: Combining docetaxel and capivasertib had increased activity in PTEN null and WT prostate tumour models in vivo. In vitro short-term docetaxel treatment caused cell cycle arrest in the majority of cells. However, a sub-population of docetaxel-persister cells did not undergo G2/M arrest but upregulated phosphorylation of PI3K/AKT pathway effectors GSK3ß, p70S6K, 4E-BP1, but to a lesser extent AKT. In vivo acute docetaxel treatment induced p70S6K and 4E-BP1 phosphorylation. Treating PTEN null and WT docetaxel-persister cells with capivasertib reduced PI3K/AKT pathway activation and cell cycle progression. In vitro and in vivo it reduced proliferation and increased apoptosis or DNA damage though effects were more marked in PTEN null cells. Docetaxel-persister cells were partly reliant on GSK3ß as a GSK3ß inhibitor AZD2858 reversed capivasertib-induced apoptosis and DNA damage. CONCLUSION: Capivasertib can enhance anti-tumour effects of docetaxel by targeting residual docetaxel-persister cells, independent of PTEN status, to induce apoptosis and DNA damage in part through GSK3ß.


Assuntos
Neoplasias da Próstata , Proteínas Proto-Oncogênicas c-akt , Pirimidinas , Pirróis , Masculino , Humanos , Docetaxel/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/farmacologia , Transdução de Sinais , Apoptose , Fosfatidilinositol 3-Quinases/metabolismo , Glicogênio Sintase Quinase 3 beta , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , PTEN Fosfo-Hidrolase/metabolismo
16.
Cell Biochem Funct ; 42(2): e3945, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38362935

RESUMO

MicroRNAs (miRNA) are small and conserved noncoding RNA molecules that regulate gene expression at the posttranscriptional level. These groups of RNAs are crucial in various cellular processes, especially in mediating disease pathogenesis, particularly cancer. The dysregulation of miRNAs was reported in many cancer types, including nasopharyngeal cancer (NPC), which is a malignant tumor of the nasopharynx. In this review, miRNAs involvement in crucial signaling pathways associated with NPC such as PTEN/PI3K/AKT, TGFß/SMAD, RAS/MAPK, Wnt/ß-catenin and pRB-E2F was investigated. miRNAs could function as tumor suppressor-miR or onco-miR in NPC profoundly influenced cell cycle, apoptosis, proliferation, migration, and metastasis. This comprehensive review of current literature provided a thorough profile of miRNAs and their interplay with the aforementioned signaling pathways in NPC. Understanding these molecular interactions could remarkably impact the diagnosis, prognosis, and therapeutic strategies for NPC.


Assuntos
Carcinoma , MicroRNAs , Neoplasias Nasofaríngeas , Humanos , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/metabolismo , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , beta Catenina/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patologia , Transdução de Sinais , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Movimento Celular/genética , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo
17.
J Exp Clin Cancer Res ; 43(1): 50, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38365726

RESUMO

BACKGROUND: Phosphatase and tensin homolog deleted on chromosome ten (PTEN) serves as a powerful tumor suppressor, and has been found to be downregulated in human bladder cancer (BC) tissues. Despite this observation, the mechanisms contributing to PTEN's downregulation have remained elusive. METHODS: We established targeted genes' knockdown or overexpressed cell lines to explore the mechanism how it drove the malignant transformation of urothelial cells or promoted anchorageindependent growth of human basal muscle invasive BC (BMIBC) cells. The mice model was used to validate the conclusion in vivo. The important findings were also extended to human studies. RESULTS: In this study, we discovered that mice exposed to N-butyl-N-(4-hydroxybu-tyl)nitrosamine (BBN), a specific bladder chemical carcinogen, exhibited primary BMIBC accompanied by a pronounced reduction in PTEN protein expression in vivo. Utilizing a lncRNA deep sequencing high-throughput platform, along with gain- and loss-of-function analyses, we identified small nucleolar RNA host gene 1 (SNHG1) as a critical lncRNA that might drive the formation of primary BMIBCs in BBN-treated mice. Cell culture results further demonstrated that BBN exposure significantly induced SNHG1 in normal human bladder urothelial cell UROtsa. Notably, the ectopic expression of SNHG1 alone was sufficient to induce malignant transformation in human urothelial cells, while SNHG1 knockdown effectively inhibited anchorage-independent growth of human BMIBCs. Our detailed investigation revealed that SNHG1 overexpression led to PTEN protein degradation through its direct interaction with HUR. This interaction reduced HUR binding to ubiquitin-specific peptidase 8 (USP8) mRNA, causing degradation of USP8 mRNA and a subsequent decrease in USP8 protein expression. The downregulation of USP8, in turn, increased PTEN polyubiquitination and degradation, culminating in cell malignant transformation and BMIBC anchorageindependent growth. In vivo studies confirmed the downregulation of PTEN and USP8, as well as their positive correlations in both BBN-treated mouse bladder urothelium and tumor tissues of bladder cancer in nude mice. CONCLUSIONS: Our findings, for the first time, demonstrate that overexpressed SNHG1 competes with USP8 for binding to HUR. This competition attenuates USP8 mRNA stability and protein expression, leading to PTEN protein degradation, consequently, this process drives urothelial cell malignant transformation and fosters BMIBC growth and primary BMIBC formation.


Assuntos
RNA Longo não Codificante , Neoplasias da Bexiga Urinária , Animais , Humanos , Camundongos , Carcinogênese/genética , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Camundongos Nus , Músculos/metabolismo , Músculos/patologia , Proteólise , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , RNA Longo não Codificante/genética , RNA Mensageiro/metabolismo , Regulação para Cima , Neoplasias da Bexiga Urinária/induzido quimicamente , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo
18.
Molecules ; 29(3)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38338464

RESUMO

Human malignant melanoma and other solid cancers are largely driven by the inactivation of tumor suppressor genes and angiogenesis. Conventional treatments for cancer (surgery, radiation therapy, and chemotherapy) are employed as first-line treatments for solid cancers but are often ineffective as monotherapies due to resistance and toxicity. Thus, targeted therapies, such as bevacizumab, which targets vascular endothelial growth factor, have been approved by the US Food and Drug Administration (FDA) as angiogenesis inhibitors. The downregulation of the tumor suppressor, phosphatase tensin homolog (PTEN), occurs in 30-40% of human malignant melanomas, thereby elucidating the importance of the upregulation of PTEN activity. Phosphatase tensin homolog (PTEN) is modulated at the transcriptional, translational, and post-translational levels and regulates key signaling pathways such as the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) and mitogen-activated protein kinase (MAPK) pathways, which also drive angiogenesis. This review discusses the inhibition of angiogenesis through the upregulation of PTEN and the inhibition of hypoxia-inducible factor 1 alpha (HIF-1-α) in human malignant melanoma, as no targeted therapies have been approved by the FDA for the inhibition of angiogenesis in human malignant melanoma. The emergence of nanocarrier formulations to enhance the pharmacokinetic profile of phytochemicals that upregulate PTEN activity and improve the upregulation of PTEN has also been discussed.


Assuntos
Melanoma , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Tensinas/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Genes Supressores de Tumor
19.
Mol Biol Rep ; 51(1): 345, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38400870

RESUMO

BACKGROUND: Breast cancer is a highly prevalent and life-threatening ailment that is commonly detected among the females. The downregulation of PTEN in breast cancer is associated with a poor prognosis, aggressive tumor type, and metastasis to lymph nodes, as it activates the pro-survival pathway PI3K/AKT, which is considered the ultimate proliferative pathway. MATERIAL AND METHODS: The mRNA expression of PTEN and AKT genes was investigated using RT-qPCR and TaqMan primer probe chemistry. Moreover DNA was also isolated from the same tissue samples and exonic regions of both genes were amplified for mutational analysis. The proteins expression of PTEN and AKT from seven human breast cancer cell lines was checked through western blot experiments. RESULT: The study revealed a decrease in PTEN expression in 73.3% of the samples, whereas an increase in AKT expression in 40% of samples was observed when compared to the distant normal breast tissue. Conversely, the remaining 60% of samples exhibited a decrease in AKT mRNA expression. There was no observed alteration in the genetic sequence of AKT and PTEN within the targeted amplified regions of breast cancer samples. The high levels of PTEN protein in T-47D and MDA-MB-453 resulted in a lower p-AKT. Two cell lines ZR-75-1 and MDA-MB-468 appeared to be PTEN negative on western blot but mRNA was detected on RT-qPCR. CONCLUSION: In breast cancer the status/expression of PTEN & AKT at mRNA and protein level might be obliging in forecasting the path of disease progression, treatment and prognosis.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Células MCF-7 , RNA Mensageiro/genética
20.
Med Oncol ; 41(3): 79, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38393440

RESUMO

Tripartite motif-containing 29 (TRIM29), also known as the ataxia telangiectasia group D-complementing (ATDC) gene, has been reported to play an oncogenic or tumor suppressive role in developing different tumors. So far, its expression and biological functions in hepatocellular carcinoma (HCC) remain unclear. We investigated TRIM29 expression pattern in human HCC samples using quantitative RT-PCR and immunohistochemistry. Relationships between TRIM29 expression level, clinical prognostic indicators, overall survival (OS), and disease-free survival (DFS) were evaluated by Kaplan-Meier analysis and Cox proportional hazards model. A series of in vitro experiments and a xenograft tumor model were conducted to detect the functions of TRIM29 in HCC cells. RNA sequencing, western blotting, and immunochemical staining were performed to assess the molecular regulation of TRIM29 in HCC. We found that the mRNA and protein levels of TRIM29 were significantly reduced in HCC samples, compared with adjacent noncancerous tissues, and were negatively correlated with poor differentiation of HCC tissues. Survival analysis confirmed that lower TRIM29 expression significantly correlated with shorter OS and DFS of HCC patients. TRIM29 overexpression remarkably inhibited cell proliferation, migration, and EMT in HCC cells, whereas knockdown of TRIM29 reversed these effects. Moreover, deactivation of the PTEN/AKT/mTOR and JAK2/STAT3 pathways might be involved in the tumor suppressive role of TRIM29 in HCC. Our findings indicate that TRIM29 in HCC exerts its tumor suppressive effects through inhibition of the PTEN/AKT/mTOR and JAK2/STAT3 signaling pathways and may be used as a potential biomarker for survival in patients with HCC.


Assuntos
Carcinoma Hepatocelular , Proteínas de Ligação a DNA , Janus Quinase 2 , Neoplasias Hepáticas , Fator de Transcrição STAT3 , Fatores de Transcrição , Humanos , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/genética , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...